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Abstract
The q-state Potts field theory with 2 � q � 4 in the low-temperature phase is
considered in the presence of a weak magnetic field h. In the absence of the
magnetic field, the theory is integrable, but not free at q > 2: its elementary
excitations—the kinks—interact at small distances, and their interaction can be
characterized by the factorizable scattering matrix which was found by Chim
and Zamolodchikov. The magnetic field induces long-range attraction between
kinks causing their confinement into the bound states. We calculate the masses
of the two-kink bound states in the leading order in h → ±0 expressing them
in terms of the scattering matrix of kinks at h = 0.

PACS numbers: 05.50.+q, 03.70.+k, 11.10.-z, 12.39.-x

1. Introduction

Kink topological excitations are quite common in two-dimensional field theories with
Hamiltonian invariant under some discrete symmetry group G. If such a symmetry is
spontaneously broken in the ordered phase, the Hamiltonian has a discrete set of degenerate
vacua |0α〉, α = 1, . . . , q. Then the kinks Kαβ , i.e. the domain walls separating two different
vacua α and β, behave like stable quantum particles which can propagate in the system.
Adding a small interaction, which explicitly breaks the Hamiltonian G-symmetry, lifts the
degeneracy of ground states |0α〉 and leads to confinement of kinks dividing the true and false
vacua. This simple but quite general scenario of confinement in two dimensions originates
to the work of McCoy and Wu [1]. Its particular realizations in different two-dimensional
models have been the subject of considerable interest in recent years [2–8].

The simplest and most studied example of the two-dimensional model exhibiting
confinement is the Ising field theory (IFT) [2], which is characterized by the Z2 symmetry
group. At zero magnetic field, the theory describes free massive (apart from the critical point)
neutral fermions, which represent in the low-temperature phase the kinks interpolating between
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two degenerate vacua. At small magnetic field h > 0, the kinks (‘quarks’) become confined
into pairs which form a tower of bound states (‘mesons’) having the zero topological charge.
The meson masses Mn(h) densely fill the segment1 [2m,∞) at h → 0. Two asymptotic
expansions describe Mn(h) at small h in different regions of this segment.

(i) Near the edge point 2m (i.e. for fixed n at h → 0) one can use the low energy expansion
in the fractional powers of the magnetic field. Its leading term was obtained by McCoy
and Wu [1], further corrections were found by Fonseca and Zamolodchikov [2, 9].

(ii) The masses of highly excited mesons (with n � 1, in particular for n ∼ 1/h) are
described by the semiclassical expansion in the integer powers of h [2, 10, 11].

Both the low energy and semiclassical expansions for the meson masses in the IFT were
obtained by means of the perturbative analysis of the Bethe–Salpeter equation, first derived
for this model by Fonseca and Zamolodchikov [9]. Since their original derivation procedure
substantially exploited the free-fermionic structure of the IFT at h = 0, it was not applied to
the models in which kinks interact at short distances already in the deconfined phase.

In this paper we address to the problem of extension of the Bethe–Salpeter approach to
make it appropriate for calculation of meson masses in such two-dimensional models. The
particular subject of our interest is the q-state Potts field theory (PFT) for 2 � q � 4, which
describes the scaling limit of the two-dimensional Potts model. In the model each site in the
lattice has q different states (‘colours’). At zero magnetic field, the Potts model is invariant
under the group Sq of permutations of q colours. At q = 2, the Potts model reduces to the
Ising model.

The zero-field PFT is integrable, i.e. it has infinite number of integrals of motion and the
factorizable scattering matrix [12]. In the low-temperature phase, the particle content of the
(zero-field) PFT contains q(q −1) kinks Kαβ , α, β = 1, . . . , q, which interact with each other
at short distances. Their S-matrix was found by Chim and Zamolodchikov [12].

The PFT in the presence of a nonzero magnetic field h acting on one of the q colours
has been studied recently by Delfino and Grinza [5]. Beyond other results relating to the
T > Tc phase, these authors performed qualitative analysis of the kink confinement in this
model, classified two-kink and three-kink bound states, and conjectured evolution of their
mass spectra with temperature and magnetic field.

The main subject of our interest is the meson masses Mn(h) in the q-state PFT in the
low-temperature phase in the limit of the weak magnetic field h → 0. As in [5], the magnetic
field acting on one colour only is chosen. We consider the mesons as the bound states of
two kinks, which attract one another with a linear potential at large distances, and undergo
scattering upon collisions. As a result, we express the leading terms in both low energy and
semiclassical expansions for Mn(h) in terms of the known zero-field kink S-matrix.

The paper is organized as follows. In the next section, we recall the definition and some
well-known properties of the Potts model on the square lattice and its scaling limit. Sections 3
and 4 describe the calculation of the meson masses in the leading order of the weak magnetic
field in the low-temperature phase at h → +0 and at h → −0, respectively, for different
values of q. In section 5, the Bethe–Salpeter equation for the PFT is derived. In the IFT, the
analogous Bethe–Salpeter equation provides the basis for the systematic theory of mesons [2].
Concluding remarks are presented in section 6.

1 Note that only the mesons having masses Mn(h) below the two masses of the lightest meson are the stable particles:
Mn(h) < M1(h) ≈ 4m. Heavier mesons are the resonances since they can decay into a pair of light mesons.
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2. The Potts model and its scaling limit

In this section we describe briefly the definition and few basic properties of the q-state Potts
model in two dimensions. We start from the square lattice model and then move to its scaling
limit.

Consider the two-dimensional square lattice Z
2, and associate the discrete spin variable

s(x) = 1, 2, . . . , q with each lattice site x ∈ Z
2. The Hamiltonian of the model is defined as

H = − 1

T

∑
<x, y>

δs(x),s(y) − H
∑

x

δs(x),q . (1)

Here the first summation is over the nearest neighbour pairs, T is the temperature, H is the
external magnetic field applied along the qth direction and δα,α′ is the Kronecker symbol. At
H = 0, Hamiltonian (1) is invariant under the permutation group Sq; at H 
= 0, the symmetry
group reduces to Sq−1. By means of mapping onto the random cluster model [13, 14], one can
also define the q-state Potts model with noninteger values of q.

The order parameters 〈σα〉 can be associated with the variables

σα(x) = δs(x),α − 1

q
, α = 1, . . . , q.

Parameters 〈σα〉 are not independent, since

q∑
α=1

σα(x) = 0. (2)

The zero-field model undergoes the ferromagnetic phase transition at the critical temperature:

Tc = 1

log(1 +
√

q)
. (3)

This phase transition is first order for q > 4, and continuous for 2 � q � 4. The ferromagnetic
low-temperature phase at zero field is q-times degenerated. For a review of many other known
properties of the Potts model see [15, 16].

We shall consider only the Potts model with 2 � q � 4. In this case, the correlation
length diverges at H → 0, T → Tc. The conformal field theory associated with this critical
point is characterized by the central charge:

c(q) = 1 − 6

t (t + 1)
, where

√
q = 2 sin

π(t − 1)

2(t + 1)
. (4)

The scaling limit of model (1) is described by the action [5]

A = A(q)

CFT − τ

∫
d2x ε(x) − h

∫
d2x σq(x). (5)

Here A(q)

CFT corresponds to the conformal field theory, which is associated with the critical
point. The fields ε(x) (energy density) and σq(x) (spin density) have the scaling dimensions

X(q)
ε = 1

2

(
1 +

3

t

)
, X(q)

σ = (t − 1)(t + 3)

8t (t + 1)
.

The couplings τ and h are proportional to the deviation of the temperature and magnetic field
from their critical point values.
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2.1. Ordered phase in the PFT at h = 0

The field theory (5) is integrable along the line h = 0 in the (τ, h)-plane. In this paper only
the low-temperature (τ < 0) phase will be considered. At h = 0 and τ < 0, the Sq symmetry
is spontaneously broken: the model has q degenerate vacua |0α〉, α = 1, 2, . . . , q, which are
distinguished by the values of the order parameter:

〈σγ 〉α ≡ 〈0α|σγ (x)|0α〉 = v

q − 1
(q δγ,α − 1), (6)

with some positive v. The symmetry group Sq acts by permutations of these vacua. Elementary
excitations are the q(q − 1) kinks Kαβ(θ), which interpolate between different vacua α and
β. Here θ denotes the kink rapidity, which parametrizes its energy and momentum

E = m cosh θ, p = m sinh θ, (7)

with m ∼ |τ |1/[2−X
(q)
ε ] being the kink mass.

The two-kink scattering at τ < 0, h = 0 is described by the Faddeev–Zamolodchikov
commutation relations

Kαγ (θ1)Kγβ(θ2) =
∑

δ 
=α,β

S
γ δ

αβ (θ1,2)Kαδ(θ2)Kδβ(θ1), (8)

with the scattering amplitudes S
γ δ

αβ (θ1,2), and θ12 = θ1 − θ2. Due to the Sq invariance, only
four scattering amplitudes are independent, providing

Kαγ (θ1)Kγβ(θ2) = S0(θ12)
∑
δ 
=γ

Kαδ(θ2)Kδβ(θ1) + S1(θ12)Kαγ (θ2)Kγβ(θ1), α 
= β, (9)

Kαγ (θ1)Kγα(θ2) = S2(θ12)
∑
δ 
=γ

Kαδ(θ2)Kδα(θ1) + S3(θ12)Kαγ (θ2)Kγα(θ1). (10)

The explicit expressions for the scattering amplitudes were determined in [12]:

S0(θ) = sinh λθ sinh λ(θ − iπ)

sinh λ
(
θ − 2π i

3

)
sinh λ

(
θ − iπ

3

)

(
λθ

iπ

)
, (11)

S1(θ) = sin 2πλ
3 sinh λ(θ − iπ)

sin πλ
3 sinh λ

(
θ − 2iπ

3

)

(
λθ

iπ

)
, (12)

S2(θ) = sin 2πλ
3 sinh λθ

sin πλ
3 sinh λ

(
θ − iπ

3

)

(
λθ

iπ

)
, (13)

S3(θ) = sin λπ

sin πλ
3



(
λθ

iπ

)
. (14)

The parameter λ is related to q as

√
q = 2 sin

πλ

3
, (15)

and



(
λθ

iπ

)
= sinh λ

(
θ + iπ

3

)
sinh λ(θ − iπ)

eA(θ), (16)

A(θ) =
∫ ∞

0

dx

x

sinh x
2

(
1 − 1

λ

) − sinh x
2

(
1
λ

− 5
3

)
sinh x

2λ
cosh x

2

sinh
xθ

iπ
. (17)
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Note that the values of the parameter λ corresponding to the integer q are

λ = 3
4 for q = 2,

λ = 1 for q = 3,

λ = 3
2 for q = 4.

2.2. Kink confinement in a weak magnetic field

Application of a small magnetic field along the q-direction lifts degeneracy between the
vacuum |0q〉 and the vacua |0α〉 with α < q. In the first order in h, the shift �E between their
energy densities reads

�E = δEα − δEq = vq

q − 1
h for α = 1, . . . , q − 1. (18)

It gives rise to the linear attractive potential between two kinks which interpolate between the
stable and false vacua,

V (x1, x2) = (x2 − x1)�E, (19)

where x1 < x2 are the spacial coordinates of the kinks.
Depending on the sign of h, two regimes are distinguished [5].

• If h > 0, the vacuum |0q〉 becomes the true ground state of the system, and the states |0α〉
with α 
= q become the false vacua. The magnetic field induces a long-range attraction
between kinks leading to their confinement. Isolated kinks do not survive as asymptotic
states of the theory, and the elementary excitations are the bound states of two and three
kinks2.

• If h < 0, the vacuum |0q〉 becomes metastable, and the true vacuum states |0α〉 with
α = 1, . . . , q − 1 are still degenerate in the energy. Elementary excitations are the kinks
Kαβ(θ) interpolating between the true vacua α, β 
= q. On the other hand, the kinks
Kαq(θ1) and Kqβ(θ2) are confined into the bound states by the magnetic field. However,
such bound states are unstable due to decay into isolated kinks Kαβ(θ) (see [5] and the
discussion below in section 4).

Note that the kinks in the fields theories with confinement are often called ‘quarks’, while their
bound states play the role of ‘mesons’ (kink–antikink states), and ‘baryons’ (tree-kink states).

3. Meson masses at h → +0

The meson mass M can be formally determined from the solution of the eigenvalue problem:

Ĥ(h)|π(P )〉 = [E(P ) + Evac]|π(P )〉, (20)

P̂ |π(P )〉 = P |π(P )〉, (21)

where Ĥ(h) is the Hamiltonian, P̂ is the total momentum operator corresponding to action
(5), Evac is the vacuum energy, and E(P ) is the meson energy spectrum, which should have
the relativistic form

E(P ) = (P 2 + M2)1/2. (22)

2 The three-kink bound states can exist if 3 � q � 4. The four-kink bound states, which are allowed for q = 4,
should be unstable due to their decay into a pair of mesons [5].
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Unfortunately, the explicit form of the PFT Hamiltonian Ĥ(h) is known only in the case
q = 2, which corresponds to the IFT. Below we describe briefly how the meson masses at
q = 2 can be calculated from the perturbative analysis of the Bethe–Salpeter equation in the
coordinate representation [9, 10]. This procedure will be then naturally generalized to the
case 2 < q � 4.

3.1. Ising field theory case: q = 2

In the IFT, kinks are fermions which are free at h = 0. For nonzero h, the Hamiltonian Ĥ(h)

can be written as

Ĥ(h) =
∫ ∞

−∞

dp

2π
ω(p) a†

p ap − h

∫ ∞

−∞
dx σ2(x), (23)

where ω(p) =
√

p2 + m2 is the spectrum of free fermions, and formfactors of the spin operator
σ2(x) are explicitly known [17]. At small h, one can treat the meson as a bound state of two
quarks neglecting four-quark, six-quark, etc contributions in its wavefunction. This two-quark
approximation is asymptotically exact in the leading order in h → 0. In this approximation,
the meson mass Mn can be calculated from the perturbative solution of the Bethe–Salpeter
equation. In the coordinate representation, the equation written in the meson rest frame reads

2ω(p̂) φ(n)(x) + �E|x| φ(n)(x) + �E Û φ(n)(x) = Mn φ(n)(x), (24)

where − ∞ < x < ∞.

Here �E = 2h〈σ2〉 is the ‘string tension’, 〈σ2〉 is the spontaneous magnetization at zero field,
|x| is the distance between the two quarks, p̂ = −i∂x , and φ(n)(x) denotes the configuration–
space wavefunction in the two-quark approximation:

φ(n)(x) =
∫ ∞

−∞

dp

2π
eipx〈0|a(P−p)ap|πn(P )〉P→0, (25)

φ(n)(−x) = −φ(n)(x). (26)

The first and the second terms on the left-hand side of (24) correspond to the kinetic energy
of two quarks, and to their long-range attraction, respectively. The linear integral operator Û

describes the the short-range interaction between quarks in the two-fermion sector; its kernel
U(x, x ′) exponentially vanishes at large distances |x| � m−1.

Several perturbative schemes have been developed for the IFT Bethe–Salpeter equation.
The most convenient for us is the procedure described in [10]. It is based on the observation
that at small h the average distance between the quarks in the meson is large compared with
the correlation length m−1. Therefore, in the right ‘transport region’ at x � m−1, one can
very well approximate the solution φ(n)(x) of the Bethe–Salpeter equation (24) by the function
�(n)(x), which is bounded in the whole line −∞ < x < ∞ and solves the equation:

[2ω(p̂) − Mn + �Ex]�(n)(x) = 0. (27)

After the Fourier transform this equation takes the form

[2ω(p) − Mn + i�E∂p]�(n)(p) = 0, (28)

providing

�(n)(x) =
∫ ∞

−∞

dp

2π
exp

{
i[f (p) − pMn]

�E
+ ipx

}
, (29)

6
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where

f (p) = 2
∫ p

0
dq ω(q) = m2

[
θ +

sinh 2θ

2

]
, (30)

and p = m sinh θ .
In the left ‘transport region’ x < 0, |x| � m−1, the function φ(n)(x) should approach

to −�(n)(−x) due to (26). In the intermediate ‘scattering region’ |x| � m−1, one can solve
equation (24) perturbatively in h. Joining solutions obtained in these three regions leads to the
condition which gives the meson mass spectrum Mn(h).

It turns out that in the leading order in h, the meson masses can be obtained from the
equation

�(n)(x)|x=0 = 0, (31)

since the odd continuous function φ(n)(x) can be approximated (in the leading order in h) by
integral (29) in the whole positive half-axis x > 0.

At x = 0, Mn > 2 and h → +0, the integral in (29) is determined by two saddle points
±pn, where

pn = m sinh βn, (32)

and βn parametrizes the meson masses Mn:

Mn = 2m cosh βn. (33)

In the leading order in h, this yields the first term of the semiclassical expansion [2, 10]

sinh(2βn) − 2βn = 2π

(
n − 1

4

)
ζ + O(ζ 2), (34)

where ζ = �E/m2 ∼ h. The semiclassical expansion holds if ζ � 1 and n � 1.
If Mn approaches 2 m, two saddle points ±pn merge at the origin, and integral (29)

becomes proportional to the Airy function:

�(n)(x)|x=0 = m

∫ ∞

−∞

dθ

2π
exp

{
i

ζ

[
θ3

3
− θ

(Mn − 2m)

m

]}
+ O(ζ)

= mζ 1/3Ai

[
− (M − 2m)

mζ 2/3

]
+ O(ζ) (35)

in the limit h → 0. Formulae (31) and (35) give rise to the leading term of the low-energy
expansion [1]:

Mn

m
− 2 = znζ

2/3 + O(ζ 4/3), (36)

where −zn denotes the nth zero of the Airy function, Ai(−zn) = 0, n = 1, 2, . . . . The
low-energy expansion holds if nζ � 1. It corresponds to the nonrelativistic approximation in
the quark dispersion law ω(p̂) = m + p̂ 2/(2m) + · · · in equation (27).

3.2. Generic q

Let us discuss now how the procedure described above should be modified to be applied to the
PFT with 2 < q � 4, or more generally, to the models exhibiting weak confinement at small
h, which are integrable but not free at h = 0. In this subsection the parameter q is allowed to
take fractional values, which are assumed not to be too close to 3.

7
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First, it is natural to expect that the two-quark approximation can be safely used at small
h, if the distance between quarks is much larger than the correlation length m−1. We adopt
two further assumptions.

(i) At large distances x2 − x1 � m−1, the interaction between the two quarks Kqα(x1) and
Kαq(x2) forming a meson is completely described by the linear attractive potential:

V (x1, x2) = (x2 − x1)�E (37)

with the string tension

�E = vq

q − 1
h + o(h). (38)

(ii) To the linear order in the magnetic field, the quark dispersion law ε(p;h) is the same as
the free-fermion spectrum ω(p) = (p2 + m2)1/2 :

ε(p;h) = ω(p) + o(h). (39)

These natural assumptions summarize the experience gained from the IFT where they
can be verified by means of the consistent perturbation theory based on the Bethe–Salpeter
equation [2, 11]. In particular, radiative corrections to the quark string tension and dispersion
law in the IFT are known to be of the third and second order in h, respectively. Furthermore,
the approach based on the above assumptions allows one to reproduce in a simple way the
leading order of the exact asymptotical expansions for the meson masses in the IFT, see section
2 of [2].

The Bethe–Salpeter equation (90) for the q-state PFT will be derived in section 5. The
kernel of this integral equation is expressed in the matrix element (94) of the magnetization
operator between the two-quark states with definite rapidities. Since the explicit form of this
matrix element is not known for q > 2, a direct proof of statements (i) and (ii) for general
PFT is still impossible, and we shall take them as assumptions.

A zero-momentum meson state π(0) can be characterized by the (q − 1)-component
wavefunction ψα(x):

ψα(x) = 〈Kqα(x1 + x)Kαq(x1) | π(0)〉, α = 1, . . . , q − 1, (40)

which is well defined for large positive x � m−1.
Action (5) and the true vacuum |0q〉 are invariant under the group Sq−1 of permutations of

the first q − 1 colours. In what follows, we shall use the results of the Sq−1 symmetry analysis
of the meson states, which has been done by Delfino and Grinza [5]. The meson states form
(q −1) multiplets πk . Here πk are the eigenstates of the generator �q−1 of cyclic permutations
of first q − 1 colours α = 1, . . . , q − 1,

�q−1πk = γ kπk, (41)

where γ = exp[2π i/(q − 1)], k = 0, . . . , q − 2.

This symmetry determines the α-dependence of the wavefunction ψk,α(x) for the state πk(0),

ψk,α(x) = γ −kαφk(x). (42)

Due to (37) and (39), the meson wavefunction φ
(n)
k (x) corresponding to the state π

(n)
k (0)

should satisfy equation (27) at x � m−1, and therefore, we can write it in the form

φ
(n)
k (x) ≈

∫ ∞

−∞

dp

2π
exp

{
i[f (p) − pMn]

�E
+ ipx

}
for x � m−1, (43)

where f (p) is given by (30).

8
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The further analysis depends on the value of n.

3.2.1. Semiclassical case For large n � 1 and fixed x � m−1, the h → 0 asymptotics of
integral (43) is determined by the contributions of two saddle points (32), providing

φ
(n)
k (x) ≈

(
�E

4π tanh βn

)1/2 [
Ck(βn) eimx sinh βn + C∗

k (βn) e−imx sinh βn
]
,

with Ck(βn) = exp

⎡
⎣ i

(
βn − sinh 2βn

2

)
ζ

+
iπ

4

⎤
⎦ . (44)

Here again parametrization (33) is implied. The coefficients C∗
k (βn) and Ck(βn) are just the

in and out amplitudes, which characterize the quark ‘plane waves’ which enter and leave at
x ∼ m−1 the scattering region 0 < x � m−1.

At zero order in h, these amplitudes should be related by the scattering condition [5]

Ck(βn) = {S2(2βn)[(q − 1)δk,0 − 1] + S3(2βn)}C∗
k (βn). (45)

The explicit form of the factor in the curly brackets on the right-hand side is

(q − 2)S2(θ) + S3(θ) = −eA(θ)
sinh

[
λ

(
iπ
3 + θ

)]
sinh

[
λ

(
iπ
3 − θ

)] sinh[λ(iπ + θ)]

sinh[λ(iπ − θ)]
, for k = 0, (46)

S3(θ) − S2(θ) = −eA(θ)
sinh

[
λ

(
iπ
3 + θ

)]
sinh

[
λ

(
iπ
3 − θ

)] , for k = 1, . . . , q − 2. (47)

Equations (44)–(46) lead to the semiclassical quantization condition:

sinh(2βn) − 2βn = [
2π

(
n − 1

4

)
+ iA(2βn) + 2α1(2βn) + 2α2(2βn)

]
ζ + O(ζ 2), (48)

where

α1(θ) = arctan [tanh(λθ) cot(πλ)] , α2(θ) = arctan [tanh(λθ) cot(πλ/3)] . (49)

Equations (33), (48) determine the masses of π0 for n � 1.
For the multiplet πk , k = 1, . . . , q − 2, the analogous quantization condition

sinh(2βn) − 2βn =
[

2π

(
n − 1

4

)
+ iA(2βn) + 2α2(2βn)

]
ζ + O(ζ 2) (50)

follows from equations (44), (45), and (47).
For q = 4, the masses of π0 and πk , k = 1, . . . , q − 2, are the same:

sinh(2βn) − 2βn =
[

2π

(
n − 1

4

)
+ iA(2βn)

]
ζ + O(ζ 2) for k = 0, . . . , q − 2. (51)

3.2.2. Low-energy expansion Consider the leading order of the low-energy expansion
h → +0, n ∼ 1. The functions φk(x) are smooth in this case and vary on the scale much

9
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larger than the correlation length m−1. At large positive x � m−1, they should satisfy the
differential equation[

2m − Mn − 1

m
∂2
x + x�E

]
φk(x) = 0. (52)

The solution regular at x → ∞ is given by the Airy function

φk(x) = Ai(t − tn), (53)

where

t = (m�E)1/3x, tn = (Mn − 2m)m1/3

(�E)2/3
. (54)

For noninteger λ equations (46), (47) yield

lim
θ→0

{S2(θ)[(q − 1)δk,0 − 1] + S3(θ)} = −1, (55)

lim
θ→0

{S3(θ) − S2(θ)} = −1. (56)

This implies the fermionic boundary condition for the wavefunction φk(0) = 0 for k =
0, . . . , q − 2 leading to the same low-energy mass spectrum (36) for all mesons πk .

3.3. Weak coupling expansion for q = 3

A separate consideration is needed at q = 3. Relations (13)–(17) reduce in this case to

λ = 1, (57)

S2(θ) = − sinh(θ + iπ/3)

sinh(θ − iπ/3)
eA(θ), S3(θ) = 0, (58)

A(θ) =
∫ ∞

0

dx

x

2 sinh(x/3)

sinh x
sinh

xθ

iπ
. (59)

The scattering condition (45) now takes the form

Ck(βn) = (−1)kS2(2βn)C
∗
k (βn). (60)

In the low-energy case, the rapidities of quarks are small, θ12 � 1, and

S2(θ1 − θ2) ≈ S2(0) = 1. (61)

Thus, the boundary conditions for equation (52) should be bosonic for φ0(x),

φ′
0(0) = 0, (62)

and fermionic for φ1(x),

φ1(0) = 0. (63)

Therefore, whereas the mass spectrum of π1 in the low-energy region is still given by equation
(36), the masses of π0 are described now by

Mn

m
− 2 = ζ 2/3z′

n + O(ζ 4/3), (64)

with (−z′
n) being the zeros of the first derivative of the Airy function Ai′(−z′

n) = 0,
n = 1, 2, . . . .

10
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It is tempting to associate this peculiar behaviour of the low-energy π0 mass spectrum in
the q = 3 case with the presence of the B-meson in the zero-field PFT [12]. At q = 3 and
h → +0, its mass MB lies exactly at the edge point 2m of the π -meson spectra.

At large n � 1, the zeros of the Airy function and its derivative behave as [18]

zn ≈
[

3π(4n − 1)

8

]2/3

, z′
n ≈

[
3π(4n − 3)

8

]2/3

. (65)

Combining these asymptotics with (36), (64), and (33), we obtain

(2βn)
3

3!
≈ 2π

(
n − 3

4

)
ζ, for k = 0, (66)

(2βn)
3

3!
≈ 2π

(
n − 1

4

)
ζ, for k = 1, (67)

at n � 1.
In the semiclassical region, quantization conditions (48) and (50) reduce at q = 3 to the

form

sinh(2βn) − 2βn =
[

2π

(
n − 3

4

)
+ 2 arctan

(
tanh 2βn√

3

)
+ iA(2βn)

]
ζ + O(ζ 4/3) (68)

for k = 0, and

sinh(2βn) − 2βn =
[

2π

(
n − 1

4

)
+ 2 arctan

(
tanh 2βn√

3

)
+ iA(2βn)

]
ζ + O(ζ 4/3) (69)

for k = 1. At βn → 0 these relations agree with (66) and (67).

4. Meson masses at h → −0

In negative magnetic field orientated along the qth direction, the kinks Kαq and Kqβ

interpolating between the true and the false vacua become confined, while the kinks Kαβ

connecting two true vacua remain stable. Coupling two attracting kinks into bound states,
one could construct the meson states both in the topological charged and topological neutral
sectors.

In the topological charged sector, the meson state παβ(0) in the ‘transport’ region
x2 − x1 > a/m, with some constant a � 1, can be written as∫ ∞

−∞
dx1

∫ ∞

x1+a/m

dx2|Kαq(x1)Kqβ(x2)〉ψαβ(x2 − x1), (70)

where the meson wavefunction ψαβ(x) should satisfy equation (27) with the string tension

�E = |h|(〈0q |σq |0q〉 − 〈0α|σq |0α〉) = q

q − 1
|h|v, α 
= q. (71)

However, the two kinks can become deconfined after the scattering process

Kαq(θ1)Kqβ(θ2) → Kαγ (θ2)Kγβ(θ1), γ 
= q, (72)

characterized by the amplitude S0(θ12) in (9). As a result, the topologically charged mesons
παβ(P ) are already unstable in the leading order in h for q > 3.

11
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On the other hand, the decay channel (72) is evidently closed for q = 3. For the state
K13(θ1)K32(θ2), the remaining scattering process

K13(θ1)K32(θ2) = S1(θ12)K13(θ2)K32(θ1) (73)

is characterized by amplitude (12), which reduces at q = 3 to the form

S1(θ) = −eA(θ). (74)

Reproducing, with minimal changes, calculations described in section 3, we obtain the masses
of the topologically charged mesons π12 for q = 3. For large n � 1, they are described by
the semiclassical quantization condition:

sinh(2βn) − 2βn =
[

2π

(
n − 1

4

)
+ iA(2βn)

]
ζ + O(ζ 2), (75)

and equation (33). For small n, n � ζ−1, the masses of π12 are described by equation (36).
Note that ζ = �E/m2 ∼ |h| at negative h.

In the topological neutral sectors, mesons παα at q 
= 4 can easily decay due to decoupling
of kinks in the process

Kαq(θ1)Kqα(θ2) → Kαγ (θ2)Kγα(θ1), γ 
= q. (76)

In zero order in h, the scattering amplitude S2(θ12) of this channel is given by equation (13).
The kink decoupling is hindered at q = 4, since S2(θ12) vanishes in this case. As a result,

commutation relation (14) for the mutual scattering of quarks Kαq(θ1) and Kqα(θ2) reduces at
q = 4 to the form

Kα4(θ1)K4α(θ2) = S3(θ12)Kα4(θ2)K4α(θ1), (77)

where α = 1, 2, 3, and

S3(θ) = −eA(θ). (78)

Accordingly, the masses of παα are described at q = 4 by relations (36) and (75) in the leading
order in h. Note that the function A(θ) also depends on the parameter q through its (not
indicated explicitly) dependence on λ, see equation (17). It is natural to expect that channel
(76) opens in higher orders in h making all the mesons unstable in the topologically neutral
sector at h → −0 and q = 4.

5. Bethe–Salpeter equation

The heuristic approach applied in this paper is based on the assumptions adopted in
subsection 3.2. We postulate the simple form (37) of the interaction between quarks at large
distances, take the quark dispersion law in the form (39), and apply the boundary condition
(45) originating from the scattering matrix at h = 0. Though this procedure seems to be
sufficient for determining the leading order of the meson masses at |h| → 0, it is desirable
to have a more systematic theory suitable for the verification of the assumptions adopted
in subsection 3.2, and for the calculation of higher order corrections to Mn. In the IFT, an
efficient technique based on the Bethe–Salpeter equation has been developed by Fonseca and
Zamolodchikov [2]. In this section we describe how a similar Bethe–Salpeter equation for the
PFT can be derived. We hope that it will be used in the future for more consequent calculation
of the weak-coupling expansion of the meson masses in the PFT.

12
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The meson energy spectra E(P ) are determined by the eigenvalue problem (20) and (21),
which we rewrite as

Ĥ0 |π(P )〉 − h

∫ ∞

−∞
dx σq(x)|π(P )〉 = [E(P ) + Evac] |π(P )〉,

P̂ |π(P )〉 = P |π(P )〉. (79)

Here the Hamiltonian Ĥ0 corresponds to the integrable zero-field PFT in the ordered phase.
Integrability of PFT at h = 0 implies, in particular, that the Hamiltonian H0 (together with
the momentum operator P̂ ) can be diagonalized by the multi-kink states |Kα(p)〉:

Ĥ0|Kα(p)〉 = [ω(p1) + · · · + ω(pn)] |Kα(p)〉, (80)

P̂ |Kα(p)〉 = (p1 + · · · + pn) |Kα(p)〉, (81)

where

|Kα(p)〉 = |Kα0,α1(p1)Kα1,α2(p2) · · · Kαn−1,αn
(pn)〉

= |Kα0,α1(θ1)Kα1,α2(θ2) · · · Kαn−1,αn
(θn)〉

[ω(θ1) · · · ω(θn)]
1/2 , (82)

αj+1 
= αj , the kink momenta are ordered as ∞ > p1 > p2 > · · · > pn > −∞,
and θj = arcsinh(pj/m) are the corresponding rapidity variables. The kink states in the
momentum and rapidity bases are normalized as

〈Kβ,α(p)|Kα,β(p′)〉 = 2πδ(p − p′),

〈Kβ,α(θ)|Kα,β(θ ′)〉 = 2πδ(θ − θ ′).

Note that the particle sector of the PFT at 3 < q � 4, h = 0, also contains the topologically
neutral kink–antikink bound states B(p), see [12]. Of course, the mesons B(p) can appear
together with kinks in the asymptotical in- and out-states at h = 0. We do not display the
mesons B(pj ) explicitly in formulae (80)–(83) just to avoid too cumbersome notations.

Let us now turn to equations (79) concentrating on the case of a positive magnetic field,
h > 0. Then the meson vector |π(P )〉 being a topologically neutral state in the sector q should
admit the expansion

|π(P )〉 =
∞∑

n=2

∑
α1,...,αn−1 
=q

∫
∞>p1>···>pn>−∞

dp1 · · · dpn

(2π)n

·|Kq,α1(p1)Kα1,α2(p2) · · · Kαn−1,q (pn)〉〈Kq,αn−1(pn) · · · Kα2,α1(p2)Kα1,q(p1)|π(P )〉. (83)

In complete analogy with the IFT, the two-quark approximation is based on the assumption
that at h → +0, the first term with n = 2 dominates in the infinite sum over n in (83).
Accordingly, in the two-quark approximation one replaces the exact eigenvalue problem (79)
by its projection onto the two-quark subspace H(q)

2 spanned by the basis |Kq,α(p1)Kα,q(p2)〉,
with α 
= q and p1 > p2:

H0 |π̃(P )〉 − h

∫ ∞

−∞
dx P(q)

2 σq(x)|π̃(P )〉 = [Ẽ(P ) + Ẽvac] |π̃(P )〉,

P̂ |π̃(P )〉 = P |π̃(P )〉, (84)

13
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where |π̃(P )〉 ∈ H(q)

2 , andP(q)

2 is the orthogonal projector on H(q)

2 . Tildes distinguish solutions
of (84) from those of the exact eigenvalue problem (79). The meson state in this approximation
is characterized by the two-quark wavefunction �α(p1, p2):

�α(p1, p2) = 〈Kq,α(p2)Kα,q(p1)|π̃(P )〉. (85)

This relation defines �α(p1, p2) in the domain ∞ > p1 > p2 > −∞. Continuation into
the whole plane −∞ < p1, p2 < ∞ provided by the Faddeev–Zamolodchikov commutation
relations (8) and (10) yields

�α(p2, p1) =
∑
β 
=q

Sβα
qq (θ1 − θ2)�β(p1, p2)

= S3(θ1 − θ2)�α(p1, p2) + S2(θ1 − θ2)
∑

β 
=α,q

�β(p1, p2). (86)

Then, equation (84) takes the form

[ω(p1) + ω(p2) − Ẽ(P )]�α(p1, p2) = Ẽvac�α(p1, p2) +
h

2

∫ ∞

−∞
dx

∫ ∞

−∞

dp′
1 dp′

2

(2π)2

· exp[ix(p′
1 + p′

2 − p1 − p2)]
q−1∑
β=1

〈Kq,α(p2)Kα,q(p1)|σq(0)|Kq,β(p′
1)Kβ,q(p

′
2)〉

×�β(p′
1, p

′
2). (87)

The matrix element in the integral kernel of this equation is the generalized formfactor of
the magnetization operator in the momentum representation. It is well known that such
formfactors have the so-called kinematic singularities at coinciding in- and out-momenta of
particles. Let us extract a part of these singularities which are contained in the disconnected
‘direct propagation’ terms3:

〈Kq,α(p2)Kα,q(p1)|σq(0)|Kq,β(p′
1)Kβ,q(p

′
2)〉 = Gαβ(p2, p1|p′

1, p
′
2)

+4π2〈σq〉q
[
δαβ

δ(p1 − p′
1)δ(p2 − p′

2) + Sβα
qq (θ ′

1 − θ ′
2)δ(p1 − p′

2)δ(p2 − p′
1)

]
. (88)

Substitution of the second line of the above formula into the right-hand side of (87) yields

Ẽvac�α(p1, p2) + 4π2h〈σq〉q
∫ ∞

−∞
dx

∫ ∞

−∞

dp′
1dp′

2

(2π)2
δ(p1 − p′

1)δ(p2 − p′
2)�α(p′

1, p
′
2)

· exp[ix(p1 + p2 − p′
1 − p′

2)] =
(

Ẽvac + h〈σq〉q
∫ ∞

−∞
dx

)
�α(p1, p2). (89)

While deriving the left-hand side of (89), we have taken into account symmetry (86). It is
natural to expect that the two divergent terms in the brackets in the right-hand side of (89)
cancel each other in the thermodynamic limit. In fact, in a finite system of length L, the
shift of the vacuum energy in the presence of a positive magnetic field h is (in the two-quark
approximation) Ẽvac = −hL〈σq〉q , and the integral

∫
dx should produce the length L of the

system.
After cancellation of the infinite terms described above, the right-hand side of (87)

becomes well defined in the thermodynamic limit, and we can safely perform in it integration

3 A detailed analysis of disconnected terms in the integrals containing formfactors in integrable quantum field theories
in a finite volume has been done by Pozsgay and Takács [19].
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in x. Then equation (87) takes the final form in the variables p = (p1−p2)/2, p′ = (p′
1−p′

2)/2:

[ω(P/2 + p) + ω(P/2 − p) − Ẽ(P )]�α(p;P)

= h

2

∫ ∞

−∞

dp′

2π

q−1∑
β=1

Gαβ(p|p′;P)�β(p′;P). (90)

Here the meson wavefunction �α(p;P) and the kernel Gαβ(p|p′;P) are defined as

�α(p1, p2) = 2πδ(p1 + p2 − P)�α(p1 − P/2;P), (91)

Gαβ(p|p′;P) = Gαβ(P/2 − p, P/2 + p|P/2 + p′, P/2 − p′). (92)

The transformation law for the function �α(p;P) under the reflection p → −p can be read
from (86) and (91).

Equation (90) gives generalization of the IFT Bethe–Salpeter equation to the q-state PFT
with 2 < q � 4. Though equation (90) and its derivation look very similar to those in the
IFT (see section 3 and equation (3.11) in [2]), an important difference should be pointed out.
Derivation of the Bethe–Salpeter equation in the IFT is based on the free-fermionic basis,
since the IFT describes noninteracting particles at h = 0. In contrast, the quarks in the
PFT at q > 2 and h = 0 strongly interact at small distances ∼ m−1. The basis states (82),
which diagonalize the PFT zero-field Hamiltonian Ĥ0, can be treated as its n-quark ‘stationary
scattering states’. Corresponding wavefunctions in the coordinate representation look like a
superposition of plane waves only if the distances between quarks are large compared with
the interaction radius. In particular, the wavefunction for the basis state |Kq,α(p1)Kα,q(p2)〉
reads

ψβ(x1, x2) = δαβ exp[i(p1x1 + p2x2)] + Sαβ
qq (θ1 − θ2) exp[i(p2x1 + p1x2)], (93)

if x2 − x1 � m−1. Here p1 > p2 is implied for the basis state, and x1 and x2 denote
the spacial coordinates of the left and right quarks, respectively, −∞ < x1 < x2 < ∞.
However, in the interaction region 0 < x2 − x1 � m−1, the motion corresponding to the
state |Kq,α(p1)Kα,q(p2)〉 is much more complicated, and it ‘cannot be treated in terms of the
wavefunction of a finite number of variables (because the virtual pair creation is possible)’
[20]. Therefore, one should not understand the term ‘the two-quark approximation’ in a literal
sense in the q-state PFT with q 
= 2.

The kernel Gαβ(p|p′;P) of the Bethe–Salpeter equation (90) is simply related to the
matrix element of the magnetization operator between the two-kink states in the rapidity basis:

〈Kq,α(θ2)Kα,q(θ1)|σq(0)|Kq,β(θ ′
1)Kβ,q(θ

′
2)〉.

= [ω(p1)ω(p2)ω(p′
1)ω(p′

2)]
1/2〈Kq,α(p2)Kα,q(p1)|σq(0)|Kq,β(p′

1)Kβ,q(p
′
2)〉. (94)

The matrix element can be expressed with the help of the crossing relations in terms of the
four-kink elementary formfactor of the magnetization operator:

F
σq

α0α1α2α3α4(θ1, θ2, θ3, θ4) = 〈0α0 |σq(0)|Kα0,α1(θ1)Kα1,α2(θ2)Kα2,α3(θ3)Kα3,α4(θ4)〉, (95)

with α4 = α0. Formfactors are the central objects in the formfactor bootstrap approach in the
two-dimensional integrable quantum field theories [17, 21, 22]. The n-particle formfactors are
subject to a set of equations (axioms), which often allow one to calculate them exactly (for a
review see [22]). Unfortunately, the explicit expressions for all n-kink formfactors in the q-state
PFT are known only in the Ising case q = 2. Delfino and Cardy [23] obtained the two-kink
formfactors 〈0α|σγ (0)|Kα,β(θ1)Kβ,α(θ2)〉 of the magnetization operators for q = 3, 4.
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Calculation of the four-kink formfactors (95) would be crucial for determining the kernel
Gαβ(p|p′;P) of equation (90). This kernel should be singular at p = ±p′ due to the kinematic
singularities of the function Gαβ(p2, p1|p′

1, p
′
2). We expect that the leading singularity of

Gαβ(p|p′;P) at p → p′ has the form

δαβ(〈σq〉q − 〈σq〉α)

[
1

(p − p′ + i0)2
+

1

(p − p′ − i0)2

]
. (96)

This term should produce after the Fourier transform the long-range attractive potential �E|x|
between the quarks. On the other hand, the regular part of Gαβ(p|p′;P) at p = ±p′ should
describe the change in their short-range interaction induced by the magnetic field.

As we know from the perturbative solution of the Bethe–Salpeter equation in the IFT [2,
11], the regular (short-range) part of the integral kernel contributes to the meson masses Mn(h)

only in the second order in h. Physically, the additional factor h reflects that the two quarks
bound in the meson spend at h → 0 almost all the time at large distances. They only rarely
appear in the scattering region x2 − x1 ∼ m−1, where the h-order correction to the short-range
interaction due to the regular part of Gαβ(p|p′;P) should be taken into account.

6. Conclusion

We extended the heuristic perturbative approach, which was originally developed [2, 9, 10]
for calculation of the meson masses in the weak confinement regime in the IFT, to the q-state
PFT with 2 < q � 4 in the presence of a weak magnetic field h. Though the latter model is
integrable at h = 0, the kinks (‘quarks’) remain to be interacting particles at h = 0. We have
calculated the masses Mn(h) of the mesons in the PFT at T < Tc in the leading order in the
weak magnetic field |h| → 0 both in the low energy and semiclassical cases. The mesons with
nonzero topological charge were predicted for the 3-state PFT in the ordered phase at h < 0.
The Bethe–Salpeter equation is derived for the q-state PFT with 2 < q � 4, which generalizes
the analogous equation known in the IFT. This equation could provide a more firm basis for the
theory, if the explicit expressions for the four-kink formfactors of the magnetization operator
would be found.

After the first version of this paper had appeared as a preprint, Lepori, Tóth and Delfino
[24] presented the results of their numerical investigations of the particle spectra in the 3-
state PFT in a wide range of magnetic fields h and temperatures τ by means of the truncated
conformal space approach (TCSA) [25]. They confirmed the qualitative picture of confinement
developed in [5], and were able to partly confirm our analytical predictions (36) and (64) for
the low-energy part of the meson spectra at h → +0. Reported in [24], the magnetic field
dependence of the masses of five lightest even (i = 0) and odd (i = 1) mesons at moderately
large magnetic fields was described by the formula

M(i)
n = 2m + c(i)

n hα, (97)

with

α ≈ 0.7,
c
(1)
1

c
(0)
1

≈ 2. (98)

These values are in reasonable agreement with the numbers

α = 2

3
,

c
(1)
1

c
(0)
1

= z1

z′
1

≈ 2.3, (99)

following from (36) and (64). However, for a complete numerical verification one needs to
increase the accuracy of the TCSA calculations at small |h|.
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The obtained results could be developed in several directions. First, it is straightforward
to extend them to the wide class of models exhibiting confinement, which are integrable but
not free at zero ‘magnetic field’, see [8]. Regarding the PFT, one can try to find from the
Bethe–Salpeter equation (90) corrections to the meson masses at small |h|, and to study the
decay mechanisms for unstable mesons in the higher orders in |h|.

It is remarkable [2] that in the IFT, the Bethe–Salpeter equation reproduces with reasonable
accuracy the mesons masses not only in the limit h → 0, but also at finite, and even at large
values of the magnetic field h. If this situations also holds for the PFT, equation (90) could
be useful for nonperturbative calculations of the meson spectra in the PFT at finite magnetic
fields. To achieve progress in all these directions, it is essential to find explicit expressions for
the n-kink formfactors of the magnetization operator in the PFT.

One more interesting open problem is to determine in the PFT the masses of ‘baryons’
consisting of three quarks [5].

We close with the following remark. For the sake of simplicity, we calculated in sections 3
and 4 the energy of a meson which has zero momentum, i.e. analyzed the problem in the meson
rest frame. It is straightforward to modify calculations to the case of a generic frame, and to
check (in the leading order in h) that the meson dispersion law E(P ) really has the relativistic
form (22), as one should expect.
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